АБИТУРИЕНТУ

С.С.Чесноков, С.Ю.Никитин,
И.П.Николаев, Н.Б.Подымова,
М.С.Полякова, проф. В.И.Шмальгаузен,
физфак МГУ, г. Москва

Продолжение. См. № 14/02

Хочу учиться на ВМК!

Задачи, предлагавшиеся на вступительных экзаменах
на факультет вычислительной математики и кибернетики МГУ им. М.В.Ломоносова в 2001 г.

I. Механика

Решение

Выберем в качестве начала отсчета времени момент, когда тело, смещенное от положения равновесия на расстояние x0, отпускают без начальной скорости. Тогда его координата будет меняться со временем в соответствии с выражением

x(t) = x0 cos wt,

где w – круговая частота колебаний, связанная с периодом колебаний соотношением . Обозначив через t0 время, за которое тело проходит от крайнего положения путь x0/2, можно записать:  откуда .

Средняя скорость тела за время t0 определяется выражением:

Отсюда

Решение

Поскольку расстояние между точками A и B намного меньше радиуса сферы, можно считать, что тело, скользящее по гладкой сферической поверхности радиусом R, движется как математический маятник длиной R, совершающий малые колебания. Поэтому время его движения из точки A в точку B равно четверти периода колебаний маятника, т.е. .

Тело на гладкой наклонной плоскости, составляющей угол a с горизонталью, движется с ускорением a=2Rsina. Длина наклонной плоскости совпадает с расстоянием между точками A и B, которое, как видно из рисунка, есть l=2Rsina. Следовательно, время движения этого тела из точки A в точку B:

II. Молекулярная физика и термодинамика

Решение

Поршень находится под действием трех сил: силы натяжения нити T и силы давления газа в сосуде pS, направленных вверх, а также силы атмосферного давления p0S, направленной вниз. Поскольку процесс охлаждения газа является медленным, можно считать, что ускорение системы равно нулю и сила натяжения нити в каждый момент времени равна весу неподвижного груза, т.е. T=Mg. Следовательно, поршень находится в равновесии при выполнении условия:

Как видно из этой формулы, давление газа p при изменении его объема постоянно. Записывая уравнение Клапейрона–Менделеева для начального и конечного состояний газа, получаем

pV1 = RT1; pV2 = RT2,

где T1=(t1 + 273) К; T2= (t2 + 273) К; V1 и V2 – начальный и конечный объемы газа, причем V1 – V2 = DhS. Объединяя записанные соотношения, получаем ответ:

Решение

Поскольку в условии задачи не сказано, что поршень невесом, будем полагать, что он обладает некоторой неизвестной массой, которую обозначим через M0. Ничего не говорится также про атмосферное давление, поэтому будем считать, что оно действует, и обозначим его через p0. Таким образом, на поршень действуют в общем случае четыре силы: сила тяжести M0g, сила упругости пружины kx (x – удлинение пружины) и сила атмосферного давления p0S, направленные вниз, и сила давления газа в цилиндре pS, направленная вверх. Условия равновесия поршня в начальном и конечном состояниях имеют вид:

 Здесь p1 и p2 – давления газа в начальном и конечном состояниях. Вычитая из второго уравнения первое, получаем:

С другой стороны, из уравнения Клапейрона–Менделеева, записанного для начального и конечного состояний газа, следует:

 Отсюда вытекает, что 

Приравнивая разности давлений газа, найденные этими двумя способами, после несложных преобразований получаем ответ: 

Видно, что наличие атмосферного давления и масса поршня не влияют на ответ.

Решение

Обозначим через p1 и p2 давления газов, находящихся в верхней и нижней частях трубки соответственно. Поскольку количества газов в верхней и нижней частях трубки, по условию задачи, различны, а при одной и той же начальной температуре объемы этих частей одинаковы, равновесие поршня возможно только при условии, что он имеет некоторую конечную массу. Обозначив массу поршня через M0, а его площадь через S, запишем условие равновесия поршня в виде:

Используя уравнение Клапейрона–Менделеева для описания состояния гелия и неона при произвольной температуре T, получаем для разности их давлений следующее выражение:

где m – масса каждого из газов, R – универсальная газовая постоянная.

Обозначим через V объем всей трубки. Тогда начальные объемы газов (при температуре T'):

 

а их конечные объемы (при температуре T''):

Объединяя записанные равенства, приходим к соотношению:

из которого после несложных преобразований получаем ответ: 

Окончание см. в № 27-28/02

.TopList