Главная страница «Первого сентября»Главная страница журнала «Физика»Содержание №19/2009

Документы

проф. О. Ф. Кабардин,
Росиийская академия образования, г. Москва;
проф. В. А. Орлов,
ИСМО РАО, г. Москва;
Академик РАО В. Г. Разумовский,
Росиийская академия образования, г. Москва;
проф. А. А. Фадеева,
Росиийская академия образования, г. Москва

Примерная программа для 7 – 9-го классов основной школы. Проект. Физика. Стандарт второго поколения

Пояснительная записка

Примерная программа по физике определяет минимальный обязательный объём содержания образования по предмету. Она может использоваться учителями и авторами учебников в качестве основы для разработки авторских программ. При разработке авторских программ возможны изменения структуры примерной программы и дополнения её содержания, изменения числа часов на изучение отдельных разделов, перечня демонстраций, опытов и лабораторных работ, экскурсий.

Примерная программа по физике определяет цели изучения физики в основной школе, содержание тем курса, даёт примерное распределение учебных часов по разделам курса, перечень рекомендуемых демонстрационных экспериментов учителя, опытов и лабораторных работ, выполняемых учащимися, а также планируемые результаты обучения физике.

Целями изучения физики в основной школе являются:

– развитие интересов и способностей учащихся на основе передачи им знаний и опыта познавательной и творческой деятельности;

– понимание смысла основных научных понятий и законов физики и взаимосвязи между ними;

– формирование представлений о физической картине мира.

Достижение этих целей обеспечивается решением следующих задач:

– знакомство учащихся с методом научного познания и методами исследования объектов и явлений природы;

– приобретение учащимися знаний о механических, тепловых, электромагнитных и квантовых явлениях, физических величинах, характеризующих эти явления;

– формирование умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием измерительных приборов, широко применяемых в практической жизни;

– овладение такими общенаучными понятиями, как природное явление, эмпирически установленный факт, проблема, гипотеза, теоретический вывод, результат экспериментальной проверки;

– пониманием отличия научных данных от непроверенной информации; ценности науки для удовлетворения бытовых, производственных и культурных потребностей человека.

Общими предметными результатами обучения физике в основной школе являются:

– знания о природе важнейших физических явлений окружающего мира и понимание смысла физических законов, раскрывающих связь изученных явлений;

– умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять полученные результаты и делать выводы; оценивать границы погрешностей результатов измерений;

– умения применять теоретические знания по физике на практике, решать физические задачи на применение полученных знаний;

– умения и навыки применять полученные знания для объяснения принципов действия важнейших технических устройств, решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды;

– формирование убеждения в закономерной связи и познаваемости явлений природы, в объективности научного знания, в высокой ценности науки в развитии материальной и духовной культуры людей;

– развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, строить модели и выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез, выводить из экспериментальных фактов и теоретических моделей физические законы;

– коммуникативные умения: докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники информации.

Частными предметными результатами обучения физике в основной школе, на которых основываются общие результаты, являются:

– понимание и способность объяснять такие физические явления, как свободное падение тел, колебания нитяного и пружинного маятников, атмосферное давление, плавание тел, диффузию, большую сжимаемость газов, малую сжимаемость жидкостей и твёрдых тел, процессы испарения и плавления вещества, охлаждение жидкости при испарении, изменение внутренней энергии тела в результате теплопередачи или работы внешних сил, электризацию тел, нагревание проводников электрическим током, электромагнитную индукцию, отражение и преломление света, дисперсию света, возникновение линейчатого спектра излучения;

– умения измерять расстояние, промежуток времени, скорость, ускорение, массу, силу, импульс, работу силы, мощность, кинетическую энергию, потенциальную энергию, температуру, количество теплоты, удельную теплоёмкость вещества, удельную теплоту плавления вещества, влажность воздуха, силу электрического тока, электрическое напряжение, электрический заряд, электрическое сопротивление, фокусное расстояние собирающей линзы, оптическую силу линзы;

– владение экспериментальными методами исследования в процессе самостоятельного изучения зависимости пройденного пути от времени, удлинения пружины от приложенной силы, силы тяжести от массы тела, силы трения скольжения от площади соприкосновения тел и силы нормального давления, силы Архимеда от объёма вытесненной воды, периода колебаний маятника от его длины, силы тока на участке цепи от электрического напряжения, электрического сопротивления проводника от его длины, площади поперечного сечения и материала, направления индукционного тока от условий его возбуждения, угла отражения от угла падения света;

– понимание смысла основных физических законов и умение применять на их практике: законы динамики Ньютона, закон всемирного тяготения, законы Паскаля и Архимеда, закон сохранения импульса, закон сохранения энергии, закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля–Ленца;

– понимание принципов действия машин, приборов и технических устройств, с которыми каждый человек постоянно встречается в повседневной жизни, и способы обеспечения безопасности при их использовании;

– овладение разнообразными способами выполнения расчётов для нахождения неизвестной величины в соответствии с условиями поставленной задачи на основании использования законов физики;

– умение использовать полученные знания, умения и навыки в повседневной жизни (быт, экология, охрана здоровья, охрана окружающей среды, техника безопасности и др.).

Метапредметными результатами обучения физике в основной школе являются:

– овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;

– понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными способами деятельности на примерах выдвижения гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;

– формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нём ответы на поставленные вопросы и излагать его;

– приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;

– развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;

– освоение приёмов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;

– формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

Личностными результатами обучения физике в основной школе являются:

– сформированность познавательных интересов, интеллектуальных и творческих способностей учащихся;

– убеждённость в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как к элементу общечеловеческой культуры;

– самостоятельность в приобретении новых знаний и практических умений;

– готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;

– мотивация образовательной деятельности школьников на основе личностно-ориентированного подхода.

– формирование ценностных отношений друг к другу, к учителю, к авторам открытий и изобретений, к результатам обучения.

Учащиеся, проявляющие повышенный интерес к физике, имеют возможность изучения её на повышенном уровне в классах с добавлением одного дополнительного учебного часа на физику из вариативной части базисного учебного плана.

Ниже прилагаются примерная программа и тематическое планирование, рассчитанные на 2 ч в неделю в 7–9-м классах, и тематическое планирование на 3 ч в неделю.

Основное содержание (210 ч)

Физика и физические методы изучения природы (не менее 5 ч)

Физика – наука о природе. Наблюдение и описание физических явлений. Измерение физических величин. Международная система единиц. Научный метод познания. Наука и техника.

Демонстрации. Наблюдения физических явлений: свободного падения тел, колебаний мятника, притяжения стального шара магнитом, свечения нити электрической лампы, электрической искры.

Лабораторные работы и опыты. 1. Измерение расстояний. 2. Измерение времени между ударами пульса. 3. Определение цены деления шкалы измерительного прибора.

Механические явления (не менее 70 ч)

Кинематика (не менее 20 ч). Механическое движение. Траектория. Путь – скалярная величина. Скорость – векторная величина. Модуль вектора скорости. Равномерное прямолинейное движение. Относительность механического движения. Графики зависимости пути и модуля скорости от времени движения.

Ускорение – векторная величина. Равноускоренное прямолинейное движение. Графики зависимости пути и модуля скорости равноускоренного прямолинейного движения от времени движения. Равномерное движение по окружности. Центростремительное ускорение.

Демонстрации. Равномерное прямолинейное движение. Зависимость траектории движения тела от выбора тела отсчёта. Свободное падение тел. Равноускоренное прямолинейное движение. Равномерное движение по окружности.

Лабораторные работы и опыты. 1. Измерение скорости равномерного движения. 2. Измерение ускорения свободного падения. 3. Измерение центростремительного ускорения.

Динамика (не менее 30 ч). Инерция. Инертность тел. Первый закон Ньютона. Взаимодействие тел. Масса – скалярная величина. Плотность вещества. Сила – векторная величина. Второй закон Ньютона. Третий закон Ньютона. Движение и силы.

Сила упругости. Сила трения. Сила тяжести. Закон всемирного тяготения. Центр тяжести.

Давление. Атмосферное давление. Закон Паскаля. Закон Архимеда. Условие плавания тел.

Условия равновесия твёрдого тела.

Демонстрации. Явление инерции. Сравнение масс тел с помощью равноплечих весов. Сравнение масс двух тел по их ускорениям при взаимодействии. Измерение силы по деформации пружины. Третий закон Ньютона. Свойства силы трения. Сложение сил. Явление невесомости. Равновесие тела, имеющего ось вращения. Барометр. Опыт с шаром Паскаля. Гидравлический пресс. Опыты с ведёрком Архимеда.

Лабораторные работы и опыты. 1. Измерение массы тела. 2. Измерение плотности твёрдого тела. 3. Измерение плотности жидкости. 4. Исследование зависимости удлинения стальной пружины от приложенной силы. 5. Сложение сил, направленных вдоль одной прямой. 6. Сложение сил, направленных под углом. 7. Измерения сил взаимодействия двух тел. 8. Исследование зависимости силы трения скольжения от площади соприкосновения тел и силы нормального давления. 9. Измерение атмосферного давления. 10. Исследование условий равновесия рычага. 11. Нахождение центра тяжести плоского тела. 12. Измерение архимедовой силы.

Законы сохранения импульса и механической энергии. Механические колебания и волны (не менее 20 ч). Импульс. Закон сохранения импульса. Реактивное движение.

Кинетическая энергия. Работа. Потенциальная энергия. Мощность. Закон сохранения механической энергии. Простые механизмы. Коэффициент полезного действия. Возобновляемые источники энергии.

Механические колебания. Резонанс. Механические волны. Звук. Использование колебаний в технике.

Демонстрации. Реактивное движение модели ракеты. Простые механизмы. Наблюдение колебаний тел. Наблюдение механических волн. Опыт с электрическим звонком под колоколом вакуумного насоса.

Лабораторные работы и опыты. 1. Изучение столкновения тел. 2. Измерение кинетической энергии по длине тормозного пути. 3. Измерение потенциальной энергии тела. 4. Измерение потенциальной энергии упругой деформации пружины. 5. Измерение КПД наклонной плоскости. 6. Изучение колебаний маятника. 7. Исследования превращений механической энергии.

Возможные объекты экскурсий. Цех завода. Мельница. Строительная площадка.

 

Строение и свойства вещества. Тепловые явления (не менее 26 ч)

Строение и свойства вещества (не менее 8 ч). Строение вещества. Опыты, доказывающие атомное строение вещества. Тепловое движение и взаимодействие частиц вещества. Агрегатные состояния вещества. Свойства газов, жидкостей и твёрдых тел.

Демонстрации. Диффузия в растворах и газах в воде. Модель хаотического движения молекул в газе. Модель броуновского движения. Сцепление твёрдых тел. Повышение давления воздуха при нагревании. Образцы кристаллических тел. Модели строения кристаллических тел. Расширение твёрдого тела при нагревании.

Лабораторные работы и опыты. 1. Обнаружение действия сил молекулярного притяжения. 2. Исследование зависимости объёма газа от давления при постоянной температуре. 3. Выращивание кристаллов поваренной соли или сахара.

Тепловые явления (не менее 18 ч). Тепловое равновесие. Температура. Внутренняя энергия. Работа и теплопередача. Виды теплопередачи. Количество теплоты. Испарение и конденсация. Кипение. Влажность воздуха. Плавление и кристаллизация. Закон сохранения энергии в тепловых процессах.

Преобразования энергии в тепловых машинах. КПД тепловой машины. Экологические проблемы теплоэнергетики.

Демонстрации. Принцип действия термометра. Теплопроводность различных материалов. Конвекция в жидкостях и газах. Теплопередача путём излучения. Явление испарения. Постоянство температуры кипения жидкости при постоянном давлении. Понижение температуры кипения жидкости при понижении давления. Наблюдение конденсации паров воды на стакане со льдом.

Лабораторные работы и опыты. 1. Изучение явления теплообмена при смешивании холодной и горячей воды. 2. Наблюдение изменений внутренней энергии тела в результате теплопередачи и работы внешних сил. 3. Измерение удельной теплоёмкости вещества. 4. Измерение удельной теплоты плавления льда. 5. Исследование процесса испарения. 6. Исследование тепловых свойств парафина. 7. Измерение влажности воздуха.

Возможные объекты экскурсий. Холодильное предприятие. Исследовательская лаборатория или цех по выращиванию кристаллов. Инкубатор.

 

Электрические и магнитные явления (не менее 64 ч)

Электрические явления (не менее 28 ч). Электризация тел. Электрический заряд. Два вида электрических зарядов. Закон сохранения электрического заряда. Электрическое поле. Напряжение. Конденсатор. Энергия электрического поля.

Постоянный электрический ток. Сила тока. Электрическое сопротивление. Электрическое напряжение. Проводники, диэлектрики и полупроводники. Закон Ома для участка электрической цепи. Работа и мощность электрического тока. Закон Джоуля–Ленца. Правила безопасности при работе с источниками электрического тока.

Демонстрации. Электризация тел. Два рода электрических зарядов. Устройство и действие электроскопа. Закон сохранения электрических зарядов. Проводники и изоляторы. Электростатическая индукция. Устройство конденсатора. Энергия электрического поля конденсатора. Источники постоянного тока. Измерение силы тока амперметром. Измерение напряжения вольтметром. Реостат и магазин сопротивлений. Свойства полупроводников.

Лабораторные работы и опыты. 1. Наблюдение электризации тел при соприкосновении. 2. Проводники и диэлектрики в электрическом поле. 3. Сборка и испытание электрической цепи постоянного тока. 4. Изготовление и испытание гальванического элемента. 5. Измерение силы электрического тока. 6. Измерение электрического напряжения. 7. Исследование зависимости силы тока в проводнике от напряжения. 8. Исследование зависимости электрического сопротивления проводника от его длины, площади поперечного сечения и материала. 9. Измерение электрического сопротивления проводника. 10. Изучение последовательного соединения проводников. 11. Изучение параллельного соединения проводников. 12. Измерение мощности электрического тока. 13. Изучение работы полупроводникового диода.

Статья подготовлена при поддержке компании «Киевские Инженерные Системы». Если у вас прорвало трубу или розетка начала искрить, и вы не знаете к кому обратиться, то оптимальным решением станет обратиться в компанию «Киевские Инженерные Системы». На сайте, расположенном по адресу www.Kis.In.Ua, вы сможете, не отходя от экрана монитора, заказать электромонтажные работы на дом по оптимальной цене. В компании «Киевские Инженерные Системы» работают только высококвалифицированные специалисты с огромным опытом работы с клиентами.

Магнитные явления (не менее 16 ч). Постоянные магниты. Взаимодействие магнитов. Магнитное поле. Магнитное поле тока. Действие магнитного поля на проводник с током.

Электродвигатель постоянного тока. Электромагнитная индукция. Электрогенератор. Трансформатор.

Демонстрации. Опыт Эрстеда. Магнитное поле тока. Действие магнитного поля на проводник с током. Устройство электродвигателя. Электромагнитная индукция. Правило Ленца. Устройство генератора постоянного тока. Устройство генератора переменного тока. Устройство трансформатора.

Лабораторные работы и опыты. 1. Исследование явления магнитного взаимодействия тел. 2. Исследование явления намагничивания вещества. 3. Исследование действия электрического тока на магнитную стрелку. 4. Изучение действия магнитного поля на проводник с током. 5. Изучение принципа действия электродвигателя. 6. Изучение явления электромагнитной индукции. 7. Изучение работы электрогенератора постоянного тока. 8. Получение переменного тока вращением катушки в магнитном поле.

Возможный объект экскурсий. Электростанция.

Электромагнитные колебания и волны (не менее 20 ч). Электромагнитные колебания. Электромагнитные волны. Влияние электромагнитных излучений на живые организмы.

Принципы радиосвязи и телевидения.

Свет – электромагнитная волна. Прямолинейное распространение света. Отражение и преломление света. Плоское зеркало. Линзы. Фокусное расстояние и оптическая сила линзы. Оптические приборы. Дисперсия света.

Демонстрации. Свойства электромагнитных волн. Принцип действия микрофона и громкоговорителя. Принципы радиосвязи. Прямолинейное распространение света. Отражение света. Преломление света. Ход лучей в собирающей линзе. Ход лучей в рассеивающей линзе. Получение изображений с помощью линз. Принцип действия проекционного аппарата и фотоаппарата. Модель глаза. Дисперсия белого света. Получение белого света при сложении света разных цветов.

Лабораторные работы и опыты. 1. Исследование свойств электромагнитных волн с помощью мобильного телефона. 2. Изучение явления распространения света. 3. Исследование зависимости угла отражения от угла падения света. 4. Изучение свойств изображения в плоском зеркале. 5. Измерение фокусного расстояния собирающей линзы. 6. Получение изображений с помощью собирающей линзы. 7. Наблюдение явления дисперсии света.

Возможные объекты экскурсий. Телефонная станция. Физиотерапевтический кабинет поликлиники. Радиостанция. Телецентр. Телеграф.

 

Квантовые явления (не менее 18 ч)

Строение атома. Планетарная модель атома. Квантовые постулаты Бора. Линейчатые спектры. Атомное ядро. Состав атомного ядра. Ядерные силы. Дефект массы. Энергия связи атомных ядер. Радиоактивность. Методы регистрации ядерных излучений. Ядерные реакции. Ядерный реактор. Термоядерные реакции.

Влияние радиоактивных излучений на живые организмы. Экологические проблемы при использовании атомных электростанций.

Демонстрации. Наблюдение треков альфа-частиц в камере Вильсона. Устройство и принцип действия счётчика ионизирующих частиц. Дозиметр.

Лабораторные работы и опыты. 1. Измерение элементарного электрического заряда. 2. Наблюдение линейчатых спектров излучения.

 

Строение Вселенной (не менее 6 ч)

Геоцентрическая и гелиоцентрическая системы мира. Физическая природа небесных тел Солнечной системы. Происхождение Солнечной системы. Физическая природа Солнца и звёзд. Строение Вселенной. Эволюция Вселенной.

Астрономические наблюдения. Знакомство с созвездиями и наблюдение суточного вращения звёздного неба. Наблюдение движения Луны, Солнца и планет относительно звёзд.

Резерв времени: 21 ч.