Главная страница «Первого сентября»Главная страница журнала «Физика»Содержание №20/2007
Электростатика: элементы учебной физики

Продолжение. См. № 17, 18, 19/07

В.В.МАЙЕР,
Гоу ВПО ГГПИ им. В.Г.Короленко, г. Глазов,
Республика Удмуртия

varaksina_ei@list.ru

Электростатика: элементы учебной физики

Лекция 4. Электрическое поле

Человек существует в гравитационном поле, которое он в принципе не может устранить. Электрическое поле можно создавать и уничтожать в простых опытах. Поэтому экспериментально изучать электрическое поле можно на гораздо более глубоком уровне, чем гравитационное. Фактически общее понятие физического поля формиру­ется в сознании учащихся именно при изучении электрического поля.

В электростатике имеют дело с электрическими полями, создаваемыми неподвижными зарядами. Такие не изменяющиеся с течением времени поля называются электростатическими. Но, усвоив понятие электростатического поля, вскоре учащиеся должны овладеть понятиями стационар­ного электрического, вихревого электрического и электромагнитного полей. Поэтому уже в электростатике нужно зна комить учащихся с полями, которые не являются электростатическими.

Это необходимо ещё и потому, что в реальной электростатике никогда не имеют дела с не изменяющимися во времени зарядами. Действительно, при электризации заряды разделяются и возрастают, заряженные электрометры постепенно разряжаются, заряды проходят по проводникам и перемещаются вместе с заряженными телами. Поэтому при изучении электростатики необходимы начальные представления и об электрическом токе, и о переменных электрических полях.

Но главное, в чём должны быть убеждены учащиеся, – это в реальности существования электрического поля, которое создаётся электрическими зарядами и передаёт их взаимодействие, и которое окружает всех нас постольку, поскольку мы пользуемся электричеством. Эта убеждённость должна опираться на систему экспериментальных доказательств, а не на авторитет учебника или учителя.

4.1. Понятие электрического поля. Опыт показывает, что заряженное тело вызывает притяжение или отталкивание другого заряженного тела на расстоянии. Непредвзято анализируя этот и другие эксперименты, вряд ли можно согласиться со странным утверждением, будто один заряд действует на другой непосредственно через пустое пространство. С этим не мог согласиться и великий экспериментатор М.Фарадей, хотя многие теоретики его времени, следуя И.Ньютону, были убеждены в справедливости так называемой теории дальнодействия. Фарадей считал, что заряд порождает вокруг себя особый вид материи – электрическое поле, – которое простирается до бесконечности и отличается от иных видов материи тем, что способно действовать на другой заряд.

Понятие электрического поля, подобно понятию заряда, относится к основным, или фундаментальным, физическим понятиям и не может быть определено формально. Существование электрического поля подтверждается всей совокупностью экспериментов электродинамики – нет ни одного опыта, которому противоречила бы концепция электрического поля.

Можно поставить опыты, наглядно показывающие электрическое поле, созданное зарядами.

В плоский сосуд, наполненный густым маслом, введём два проводящих шарика и насыпем лёгкий сыпучий непроводящий порошок, например манную крупу или мелко настриженный волос. На шарики подадим разноимённые заряды.

При этом будем наблюдать, как первоначально хаотически ориентированные частички выстраиваются в линии, начинающиеся на одном и заканчивающиеся на другом заряде. Таким образом, в каждой точке пространства между двумя зарядами имеется субстанция, которой не было при отсутствии зарядов. Это и есть электрическое поле. Частицы выстраиваются в линии потому, что со стороны электрического поля на них действуют силы. Поэтому линии между электродами, которые обозначают частицы, называются силовыми линиями электрического поля.

4.2. Энергия электрического поля. При электризации трением, давлением или посредством электростатической индукции разноимённые заряды возникают за счёт механической работы. Значит, для создания электрического поля надо совершить работу. В электрическом поле заряжен­ные тела начинают перемещаться и поворачиваться. Следовательно, электрическое поле способно совершать работу. Таким образом, электрическое поле обладает энергией.

При разряде заряженных тел электрическое поле исчезает, и его энер­гия превращается в кинетическую энергию движущихся зарядов. В металлах это электроны, в жидкостях и газах – электроны и ионы. Кинетическая энергия зарядов превращается в другие виды энергии. Например, если при разряде возникает электрическая искра, то энергия электрического поля в конечном итоге превращается в механическую (звук), тепловую (нагрев), световую (вспышка).

4.3. Скорость распространения электрического поля. Доказать существование электрического поля можно только экспериментально. Пусть два заряженных тела расположены на некотором расстоянии друг от друга. Сдвинем одно из них на небольшое расстояние. Тогда изменится сила, действующая на второе тело, и оно также переместится на соответствующее расстояние. Если электрическое поле реально существует, то перемещение второго тела должно произойти спустя некоторое время, в течение которого изменение поля вблизи первого тела дойдёт до второго.

Опыты с заряженными телами показывают, что электрическое воздействие одного заряженного тела на другое происходит мгновенно. Давайте вдумаемся в это утверждение. Мгновенно – значит моментально, в тот же момент времени. Поэтому промежуток времени между перемещением первого заряда и откликом на это перемещение второго заряда должен быть равен нулю. Но ни один эксперимент не позволяет измерить как угодно малый промежуток времени. Значит, опыты по перемещению зарядов, на которые мы ссылались, доказывают только то, что взаимодействие происходит за время, меньшее чувствительности использованных часов или иных измерителей времени.

Если перемещать заряд очень быстро и воздействовать им на заряд, который тоже может двигаться с большой скоростью, то, может быть, удастся измерить время распространения взаимодействия между зарядами? Но как заставить заряд быстро перемещаться? Понятно, что пытаться использовать механическое перемещение бесполезно. Вспомним, что при сближении заряженных противоположными зарядами шариков между ними проскакивает искра и шарики разряжаются. Это означает, что заряд с одного из них переходит на другой. Движение заряда при этом происходит очень быстро.

Воспользовавшись этим наблюдением, соберём экспериментальную установку, состоящую из двух одинаковых пар проводящих стержней с разрядными промежутками между ними. Зарядим металлические шарики одной пары стержней зарядами +q и –q и начнём их сближать. Как только между шариками проскочит искра, появляется маленькая искорка между шариками и во втором диполе! Отсюда следует, что быстрое движение зарядов в одной точке пространства вызывает соответствующее движение зарядов в другой точке.

Казалось бы, мы не узнали ничего нового. Но это не так: заряды в обсуждаемом эксперименте движутся настолько быстро, что удаётся измерить время, необходимое для распространения изменения электрического состояния на некоторое расстояние. Такие измерения будут выполнены позже, в конце изучения электродинамики. Сейчас, забегая вперёд, можно просто сообщить учащимся, что они дадут значение скорости передачи электрического состояния с = 3 • 108 м/с.

Таким образом, электрическое поле реально существует потому, что, как показывает эксперимент, оно обладает энергией и его изменения рас­пространяются в пространстве с конечной скоростью, равной скорости света в вакууме.

Любопытно, что описанный опыт первым поставил итальянский физик Л.Гальвани на заре систематического исследования явлений электродинамики. Правда, вместо второго разрядного промежутка он использовал препарированную лапку лягушки, которая сокращалась всякий раз, когда проскакивала искра между шариками первого разрядного промежутка. Спустя примерно 100 лет фактически те же опыты повторил немецкий физик Г.Герц. Но он уже владел развитой теорией электродинамических процессов, которую создал К.Максвелл, опиравшийся на «Экспериментальные исследования по электричеству» М.Фарадея. Именно Герц первым экспериментально доказал, что возмущение электрического поля распространяется в пространстве в виде электромагнитной волны, и измерил скорость этого распространения, которая совпала со скоростью света в вакууме.

4.4. Принцип суперпозиции электрических полей. Согласно полевой концепции электрический заряд действует на другой заряд именно посредством электрического поля. Поле одного заряда действует на другой, а поле второго заряда действует на первый. Так осуществляется взаимодействие двух зарядов. При этом сами поля не взаимодействуют: поле первого заряда остаётся таким же, как если бы второго заряда не было. Электрические поля зарядов просто накладываются друг на друга так, что результирующее поле является суммой составляющих полей. В этом заключается сущность принципа суперпозиции электрических полей (от лат. superposition – наложение).

Принцип суперпозиции надо понимать так: электрическое поле одного заряда не влияет на поля других зарядов, а поля других зарядов не оказывают никакого влияния на поле данного заряда, поэтому результирующее электрическое поле есть простое наложение, или сумма электрических полей, создаваемых всеми зарядами.

Исследование 4.1. Точечный индикатор электростатического поля

Информация. Электростатические поля удобно исследовать с помощью индикаторов, позволяющих оценить направление и величину кулоновской силы в каждой точке поля. Простейший точечный индикатор представляет собой лёгкое проводящее тело, подвешенное на нити. Раньше для изготовления лёгкого шарика рекомендовали использовать сердцевину ветки бузины. В настоящее время бузину целесообразно заменить пенопластом. Возможны и другие решения проблемы.

Задание. Разработайте конструкцию и изготовьте простейший индикатор электростатического поля. Экспериментально определите его чув­ствительность.

Вариант выполнения. Из кусочка резины от детского воздушного шара выдуйте резиновый шарик 1 диаметром 1–2 см. Шарик привяжите к белой шёлковой или капроновой нити 2, которую проденьте через полиэтиленовую трубку 3 и зажмите деревянным колышком 4. Поверхность шарика натрите до характерного металлического блеска графитовым порошком от грифеля мягкого простого карандаша.

Шарик зарядите от потёртой мехом эбонитовой палочки, пье­зоэлек­трического источника или электрофорной машины. Введите индикатор в поле сферического заряда и по величине действующей силы оцените чув­ствительность индикатора (см. исследование 3.5).

Исследование 4.2. Исследование электростатических полей

Задание. Используя точечный индикатор, исследуйте электростатические поля различных заряженных тел.

Вариант выполнения. Из рисунка понятно, как посредством точечного индикатора можно исследовать поле наэлектризованного трением листа оргстекла или пенопласта.

Аналогичным образом можно исследовать поле заряженного шара электроскопа, изменение этого поля при заземлении корпуса прибора, поле двух заряженных разноимённо и одноимённо шаров, поле заряженной металлической пластины и т.д. Такие исследования дают наглядный образ электростатических полей в различных ситуациях.

В качестве примера на рисунке показана последовательность выполнения демонстрации экранирующего действия заземлённого проводника.

 11-05.gif (8951 bytes)

Вначале показывают, что электрическое поле существует по обе стороны наэлектризованного диэлектрика (рис. а). Затем в промежуток между заряженным телом и одним из индикаторов за изолирующую ручку вносят большой металлический лист; при этом индикатор показывает, что электростатическое поле за листом не исчезает (рис. б). Наконец металлический лист заземляют, и шарик индикатора немедленно опадает (рис. в). Убрав заземление экрана, показывают, что электростатическое поле за ним восстанавливается.

Исследование 4.3. Дипольный индикатор электростатического поля

Информация. Возможные конструкции дипольного индикатора понятны из рисунков внизу.

Основой индикатора является лёгкая полиэтиленовая трубочка 1 с отверстием посередине (можно взять соломинку). В качестве оси вращения удобно использовать канцелярскую булавку 2, на которую надеты бусинки 3, выполняющие роль подшипников, и пенопластовый фиксатор 4. Булавку крепят либо на подставке 5, либо на конце держателя 6. На рис. в показана ещё более простая конструкция. В простейшем случае индикатор может представлять собой полоску бумаги, согнутую под углом вдоль и установленную на иглу в центре тяжести.

Задание. Выберите наиболее доступную конструкцию, изготовьте дипольные индикаторы и с их помощью исследуйте различные электростатические поля. Объясните, почему незаряженная трубка ориентируется в электрическом поле.

Вариант выполнения. Изготовив несколько однотипных дипольных индикаторов, вы можете с их помощью визуализировать интересующие вас поля.

Учащимся будет интересна такая работа при условии, что опыты с диполями окажутся не слишком капризными. А это может случиться, если конструкция диполя не будет отработана: слишком большое трение на оси вращения смажет эффект от экспериментов. Поэтому изготовление дипольных индикаторов, при кажущейся простоте, требует и старания, и тщательности.

Возможно, наилучший вариант применения дипольного индикатора заключается в использовании его для объяснения физической сущности визуализации электрических полей мелким диэлектрическим порошком.

Исследование 4.4. Спектры электрических полей

Информация. Диэлектрические частицы в электрическом поле обозначают силовые линии и тем самым делают поле видимым – визуализируют его. Получающиеся при этом картины электрических полей называются спектрами.

Задание. Объясните метод визуализации электростатических полей диэлектрическим порошком так, чтобы его сущность стала понятной учащимся. Получите и исследуйте спектры различных электрических полей.

Вариант выполнения. Для объяснения воспользуйтесь аналогией между отдельной частицей порошка и дипольным индикатором (см. исследование 4.3). Добейтесь понимания учащимися, почему частицы порошка выстраиваются в обособленные друг от друга силовые линии поля. Проделайте модельные эксперименты с двумя дипольными индикаторами, подтверждающими ваше объяснение.

Для школьного физического кабинета промышленность выпускает специальные приборы для демонстрации спектров электрических полей. Эти приборы представляют собой нанесённые электропроводящей краской на пластинки из оргстекла электроды, на которые устанавливается плоская кювета с касторовым маслом со взвешенными частицами манной крупы. Приборы помещают на конденсор кодоскопа, электроды подключают к высоковольтному источнику и проецируют визуализированное поле на экран. Целесообразно продемонстрировать учащимся электрические поля разноимённо и одноимённо заряженных тел, заряженной плоскости, двух разноимённо заряженных плоскостей.

Визуализированные картины электрических полей на экране очень красивы и информативны, но сам демонстрационный опыт трудно считать безупречным, поскольку в нём одновременно используются приборы, в которых имеются сетевое напряжение 220 В и высоковольтное напряжение до 25 кВ.

Поэтому несравненно больше пользы будет, если школьники самостоятельно выполнят исследование полей в домашних условиях. Для этого в блюдце нужно налить немного подсолнечного масла и присыпать его сверху манной крупой или мелко настриженным волосом. Затем поместить в масло металлические электроды требуемой формы и соединить их с пьезоэлектрическим источником. Нажимая на рычаг этого источника, юные исследователи увидят, как взвешенные в масле частицы будут визуализировать исследуемые электрические поля.

В индивидуальных экспериментах можно также использовать прозрачную пластмассовую баночку с визуализирующим поле составом, ставя её плоским дном на электроды, вырезанные из толстой алюминиевой фольги.

Исследование 4.5. Построение силовых линий электрических полей

Информация. Д.Максвелл предложил простой способ построения силовых линий сложных электрических полей. Сначала вычерчивают линии для двух уже известных полей. При их пересечении получается сетка четырёхугольных ячеек, в которых одна диагональ пропорциональна геометрической сумме напряжённостей полей, а другая – их разности. Соединяя соответствующие углы ячеек, получают линии напряжённости суммарного поля в виде ломаных линий. Можно сделать их гладкими, либо сглаживая ломаные, либо уменьшая размеры ячеек, для чего увеличивают число исходных линий.

Задание. Изготовьте сетки электрических полей двух точечных зарядов. По этим сеткам постройте силовые линии полей одинаковых разно­имённых и одноимённых зарядов.

Вариант выполнения. Составьте компьютерную программу, рисующую силовые линии точечных зарядов, находящихся на разных расстояниях друг от друга, и на принтере распечатайте получившиеся изображения. Пользуясь принципом суперпозиции, ломаными кривыми обозначьте силовые линии результирующих полей. Дайте теоретическое обоснование метода Максвелла построения силовых линий.

Исследование 4.6. Энергия электрического поля

Информация. Обычно в опытах по электростатике для демонстрации взаимодействия зарядов используют лёгкие тела. В результате у учащихся создаётся ощущение, что электростатическое поле – это слабое поле, не способное совершать сколько­нибудь значительную работу.

Проблема. Возможна ли демонстрация такого опыта, который развеял бы неверное ощущение слабости электрического поля?

Задание. Разработайте и поставьте простой демонстрационный опыт, убедительно показывающий, что электрическое поле обладает энергией и в принципе может совершать значительную работу.

Вариант выполнения. В качестве источника электрического поля удобно использовать наэлектризованный трением шерстяной варежкой лист пенопласта размером, например, 4 20 40 см (см. исследование 1.2). Деревянную доску или брус длиной до 5 м уравновесьте на легко вращающейся платформе, в качестве которой можно использовать горизонтальный диск из школьного набора по вращению. Можно взять гладкую выпуклую опору, например, большой стальной шар от подшипника, бильярдный шар и т.п. К одному из концов доски приблизьте наэлектризованный лист пенопласта. При этом учащиеся увидят, как массивная доска начинает притягиваться к листу – электростатическое поле совершает работу!

Ещё большее впечатление опыт произведёт, если деревянную доску заменить массивной металлической трубой или профилем внушительных размеров.

Электрическим полем можно раскрутить лежащий на вращающейся опоре предмет или поворачивать его на разные углы в ту и другую сторону. Важно, чтобы учащиеся разобрались, какую часть работы совершает электрическое поле, а какую – демонстратор.

Исследование 4.7. Высоковольтный источник напряжения

Информация. Учащиеся ещё не знакомы с понятиями потенциала и разности потенциалов, но уже настала необходимость в использовании сетевого источника высокого напряжения. Раньше промышленность выпускала для школ высоковольтный преобразователь «Разряд-1». В настоящее время его сменили несколько новых источников высокого напряжения. Они обеспечивают получение напряжения, плавно регулируемого в пределах от 0 до 30 кВ, снабжены аналоговым или цифровым вольтметром, высоковольтным конденсатором, разрядником, соединительными про­водниками в высоковольтной изоляции со штекерами и т.д. Выход этих приборов имеет три клеммы, каждая из которых может быть заземлена. Поэтому высоковольтные источники могут обеспечить получение равных потенциалов противоположного знака относительно Земли.

Проблема. Как быстро и убедительно показать учащимся, что высоковольтный источник создаёт такие же электростатические поля, в существовании которых они уже убедились?

Задание. Предложите простой эксперимент, показывающий, что сетевой источник высокого напряжения даёт такие же заряды, как и те, которые получаются при различных способах электризации.

Вариант выполнения. На некотором расстоянии друг от друга разместите два одинаковых металлических шара и наэлектризуйте их так, что­бы они имели равные по модулю и противоположные по знаку заряды. В электрическое поле введите точечный индикатор (см. исследование 4.1) и отметьте его положение. Разрядите шары, замкнув их проводником. Двумя проводниками в изоляции подключите шары к выводам высоковольтного источника и постепенно повышайте напряжение на его выходе. При этом вы обнаружите, что точечный индикатор занимает такое же положение, как и в начале опыта. Отсюда следует, что высоковольтный источник способен создать такое же электрическое поле, как и поле, возникающее при любом из способов электризации тел. Разумеется, возможны и другие опыты, доказывающие этот факт.

Исследование 4.8. Распространение электрического поля

Информация. Принципиально важно экспериментальное доказательство того факта, что электрическое поле может распространяться в пространстве. В п. 4.3 показано, что для этого в качестве источника и индикатора электрического поля могут быть использованы два диполя, снабжённые парами проводящих шаров, между которыми происходят электрические разряды. Разряд в приёмном диполе очень слаб и поэтому мало пригоден для использования в учебном эксперименте.

Проблема. Нельзя ли в качестве индикатора электрического разряда в приёмном диполе использовать неоновую лампу (см. исследование 1.4)?

Задание. Разработайте и поставьте опыт, убедительно показывающий, что изменяющееся электрическое поле действительно распространяется в пространстве.

Вариант выполнения. При изучении электростатики нет необходимости вводить понятие электромагнитной волны и демонстрировать её распространение на сколько­нибудь значительное расстояние. Вполне достаточно показать учащимся, что изменения электрического поля распространяются на несколько десятков сантиметров.

К выходу высоковольтного источника подключите диполь – два одинаковых куска алюминиевого провода в изоляции, на обращённых друг к другу концах которых сделаны кольца. Длина диполя некритична (от 0,5 до 1,0 м). Точно такой же по размерам диполь укрепите на пластмассовой линейке, расположив посередине него любую неоновую лампу (например, типа ВМН02).

При постановке опыта включите высоковольтный источник и повышайте напряжение до тех пор, пока через разрядный промежуток длиной в несколько миллиметров излучающего диполя не станут проскакивать искры. Расположите приёмный диполь параллельно излучающему на расстоянии 20–100 см. В темноте вы увидите, что при каждом электрическом разряде неоновая лампа вспыхивает.

Опыт показывает, что быстро (точнее, ускоренно) движущийся заряд в излучающем диполе является источником изменяющегося электрического поля, которое в пространстве распространяется до приёмного диполя и вызывает в нём движение зарядов, что и обнаруживается неоновой лампой.

Разверните приёмный диполь перпендикулярно излучающему. При этом неоновая лампа перестаёт светиться. Отсюда следует, что электрическое поле распространяется в пространстве так, что не изменяет своей ориентации.

Исследование 4.9. Отличие переменного электрического поля от электростатического

Информация. Мы знаем, что от источника переменного электрического поля в пространстве распространяется электромагнитная волна. Однако учащимся предстоит узнать это примерно через год. Тем не менее уже сейчас при изучении электростатики целесообразно добиться понимания, что переменное электрическое поле существенно отличается от электростатического. Для этого можно воспользоваться хорошо известным фактом: электромагнитная волна практически полностью отражается даже от тонкого проводящего листа, а электростатическое поле за таким листом может существовать.

Проблема. Как в простом демонстрационном эксперименте сравнить свойства электростатического и переменного электрического полей?

Задание. Используя наэлектризованное тело, дюралевый лист, электрометр, высоковольтный источник питания, излучающий диполь и приёмный диполь с неоновой лампой, разработайте и поставьте простой эксперимент, показывающий, что переменное электрическое поле не про­ходит через проводящий лист, а постоянное – проходит.

Вариант выполнения. Заряженное тело поднесите к шару электрометра, при этом его стрелка отклонится. Введите между заряженным телом и шаром электрометра дюралевый лист, держа его за ручку из изолятора. При этом стрелка электрометра несколько опадёт, но всё равно будет указывать на присутствие электростатического поля. Объясните это явление.

Теперь заземлите дюралевый лист, хотя бы взяв его рукой, – стрелка электрометра немедленно опадёт. Это свидетельствует о том, что за заземлённым дюралевым листом электростатическое поле отсутствует.

Опыт показывает, что незаземлённый металлический лист не препятствует проникновению через него электростатического поля (сравните с результатом исследования 4.2).

Воспроизведите установку исследования 4.8, включите высоковольтный источник и добейтесь свечения неоновой лампы в приёмном диполе при электрических разрядах в излучающем диполе. Введите незаземлён­ный лист дюраля в промежуток между излучающим и приёмным диполями – свечение лампы сразу исчезает. Отсюда следует, что переменное электрическое поле не в состоянии преодолеть металлический лист, даже если он не заземлён.

Исследование 4.10. Скорость распространения электрического поля

Информация. При движении зарядов электрическое поле распространяется не только в свободном пространстве, но и вдоль проводников. Об этом свидетельствуют опыты по разделению зарядов в проводниках за счёт электростатической индукции.

Проблема. Как поставить учебный эксперимент, наглядно показывающий высокую скорость распространения электрического поля по проводнику?

Задание. Разработайте демонстрационную установку, показывающую, что в принципе возможно экспериментально оценить скорость распространения электрического поля вдоль проводника.

Вариант выполнения.

Два электрометра 3 и 4 поставьте рядом. К одному электрометру подсоедините провод 2 длиной около метра. Со вторым электрометром соедините изолированный провод 5 длиной несколько десятков метров (этот провод можно проложить по всему классу и даже вне него). К оголённым концам проводов приближайте наэлектризованный трением лист пенопласта 1. Вы обнаружите, что стрелки обоих электрометров в этом случае одновременно реагируют на приход электрического поля от пенопласта по проводам 2 и 5 существенно различной длины.

Это свидетельствует о том, что скорость распространения электрического поля очень велика и не может быть определена в примитивных экспериментах. Измерения, которые будут проведены позже, покажут учащимся, что она составляет сотни тысяч километров в секунду.

Вопросы и задания для самоконтроля

1. Какова оптимальная методика введения и формирования понятия элек­трического поля?

2. Как доказать, что электрическое поле обладает энергией?

3. Нужно ли в электростатике рассматривать скорость распространения электрического поля?

4. Сформулируйте принцип суперпозиции электрических полей.

5. Какие индикаторы электростатического поля существуют и как их использовать в учебных исследованиях полей?

6. В чём суть метода визуализации электростатических полей диэлектрическим порошком, взвешенным в вязком масле?

7. Что предпочтительнее: демонстрация спектров электростатических полей или наблюдение их в самостоятельном эксперименте учащихся?

8. В чём суть метода Максвелла построения силовых линий сложных элек­трических полей?

9. Как показать, что электрическое поле действительно распространяется в пространстве?

10. В чём суть опыта, показывающего исключительно большую скорость распространения электрического поля вдоль проводника?

Литература

Песин А.И., Решетняк В.Г. Новые приёмы демонстрации электрического поля. – Физика в школе, 1986, № 6, с. 67–70.

Песин А.И., Свистунов А.Ю., Валиев Б.М. Модельный эксперимент для изучения электростатического поля в школьном курсе физики. – Учебная физика, 1999, № 2, с. 19–28.

Проказов А.В. Пенопласт в опытах по электростатике. – Учебная физика, 2001, № 3, с. 4–10.

Сабирзянов А.А. Построение силовых линий электрических полей. – Учебная физика, 2004, № 5, с. 27–28.

Шилов В.Ф. Физические приборы из шариковой ручки. – Учебная физика, 2000, № 3, с. 4–7.