В.Б.ДРОЗДОВ, г. Рязань

Идеальный газ в конкурсных задачах

Краткая теория. Взаимодействие молекул идеального газа друг с другом происходит путём абсолютно упругих соударений. Суммарный объём молекул пренебрежимо мал по сравнению с объёмом, занимаемым газом. Идеальный газ подчиняется уравнению Клапейрона–Менделеева:

     (1)

где p, V, T – соответственно давление, объём и абсолютная температура газа, m и M – масса и молярная масса газа, – универсальная (т.е. одинаковая для разных газов) газовая постоянная. Величина называется количеством вещества и выражается в молях. Эта величина, как и масса, аддитивна, т.е. суммируется. Поэтому уравнение (1) для смеси n газов примет вид

Молярная масса конкретного газа определяется по формуле , где Mr – определяемая по таблице Менделеева относительная молекулярная масса.

Закон сохранения и превращения энергии с учётом тепловых явлений – первое начало (закон) термодинамики: количество теплоты, подведённое к телу, равно изменению внутренней энергии тела плюс работе, совершаемой телом над внешними телами, т.е.

Задача 1. Два сосуда, содержащие один и тот же газ, соединены трубкой с краном. Объёмы сосудов равны V1 и V2, а давления в них p1 и p2. Каким будет давление газа после открытия крана соединительной трубки? Температура газа в обоих сосудах одинакова и не изменяется после открытия крана.

Решение. Запишем уравнение (1) для газа в обоих сосудах до открытия крана, а затем уравнение состояния газа в едином сосуде после его открытия. Эти уравнения образуют систему:

где m1 и m2 – массы газа в первом и втором сосудах соответственно. Сложив почленно первые два уравнения и сравнив получившееся уравнение с третьим, получим p(V1 + V2) = p1V1 + p2V2, откуда искомое давление

Задача показывает, что нет ничего страшного в том, что в системе уравнений неизвестных (p, m1, m2, M, T) больше, чем уравнений. Ведь от нас не требуется найти все неизвестные. Поэтому в такой ситуации не следует искать «недостающие» уравнения – их не существует.

Задача 2. Газ, масса которого равна m1, а молярная масса M1, смешали с газом, масса которого равна m2, а молярная масса M2. Найдите среднюю молярную массу смеси.

Решение. Так как количество вещества смеси газов то искомая средняя молярная масса смеси Отметим, что полученная формула легко обобщается на случай смеси n газов:

Задача 3. Трубка длиной l, открытая с обоих концов, наполовину погружена в ртуть. Трубку сверху закрывают пальцем и вынимают из ртути. Чему равна длина столбика ртути, оставшегося в трубке? Атмосферное давление уравновешивается столбом ртути высотой H.

Решение. Пусть длина столбика ртути, оставшегося в трубке, равна x. Поскольку он находится в равновесии, то сумма действующих на столбик сил равна нулю: F1 + F2 + mg = 0. Здесь mg – сила тяжести, F1 и F2 – силы давления атмосферного и разреженного воздуха над ртутью соответственно.

Из векторного равенства вытекает скалярное: F1 = F2 + mg. Так как F1 = p1S, F2 = p2S, где S – площадь сечения трубки, – плотность ртути, то имеем:

По условию, тогда В последнем уравнении два неизвестных: x и p2. Значит, нужно ещё одно уравнение. Его нам даст закон Бойля–Мариотта, записанный для воздуха в верхней половине трубки: Исключая p2 из системы уравнений

приходим к квадратному уравнению:

2x2 – 2(H + l)x + Hl = 0

с двумя положительными корнями:

Какой из них выбрать? Очевидно, что

Поэтому

Задача 4 (мехмат МГУ, 1988). На рисунке показан цикл, совершаемый над идеальным газом, причём участок 12 изображает изохорный процесс, 23 – изобарный. Температуры газа в точках 1 и 3 равны соответственно T1 = 300 К и T3 = 400 К. Найдите температуру T2 газа в точке 2. Масса газа постоянна.

Решение. Сначала запишем уравнение для трёх вершин треугольника:

Пользуясь рисунком, меняем индексы у величин p3 и V2:

Далее исключаем неизвестную величину , которую не требуется определять:

Осталось воспользоваться несколько скрытым условием задачи: точки 0, 1, 3 лежат на одной прямой, следовательно,

Но p3 = p2, следовательно, левые части уравнений в последней системе равны. Тогда равны и правые части: откуда T2 = 346 К.

Задача 5 (МГТУ им. Н.Э.Баумана). Посередине лежащего на боку заполненного газом запаянного цилиндрического сосуда длиной L = 1 м находится тонкий поршень массой m = 0,1 кг и площадью S = 10 см2. Если сосуд поставить на основание, то поршень перемещается на расстояние l = 1 см. Каково было начальное давление p газа в сосуде? Трение между стенками сосуда и поршнем отсутствует.

Решение. Рассмотрим сосуд в горизонтальном и вертикальном положениях. Запишем по закону Бойля–Мариотта два уравнения, дополнив их условием механического равновесия поршня:

Выразим из первого уравнения p1, из второго – p2 и подставим эти величины в третье уравнение. В результате найдём из линейного уравнения искомое неизвестное:

p = 2,5•104 Па.

Задача 6. Зимой в комнате был включён электронагреватель мощностью 1 кВт, который работал 1 ч. Найдите изменение внутренней энергии воздуха в комнате.

Решение. Окружающий нас воздух представляет собой смесь двухатомных газов, если правомерно пренебречь ничтожной примесью инертных газов. Тогда внутренняя энергия воздуха

С учётом формулы (1) Объём комнаты V = const. А что будет с давлением? Отметим, что реальное жилище – не наглухо изолированный от внешнего мира бункер. Как только включили нагреватель, давление слегка повысится по сравнению с атмосферным. Воздух через мельчайшие щёлочки начнёт выходить из комнаты. Давления внутри и вне тут же сравняются. Так что и p = const. Но тогда и U = const, следовательно, изменение внутренней энергии А нагреватель включили не для увеличения внутренней энергии воздуха, а чтобы в комнате повысилась температура!

Задача 7 (физфак МГУ, 1977). Идеальный газ медленно переводят из состояния с объёмом V1 = 32 л и давлением p1 = 4,1•105 Па в состояние с объёмом V2 = 9 л и давлением p2 = 15,5•105 Па так, что давление во время сжатия изменяется в зависимости от объёма по линейному закону p = aV + b, где a и b – постоянные величины. При каком объёме температура газа в этом процессе будет наибольшей?

Решение. Имеем систему уравнений:

из которой последовательно исключаем b и a:

откуда

Из последнего уравнения и уравнения (1) легко вывести: Зависимость температуры от объёма представляет собой квадратичную функцию с отрицательным коэффициентом (при заданных значениях p1, V1, p2, V2) при старшем члене. Значит, наибольшее значение температуры достигается при

Задача 8. Некоторую массу m идеального газа с молярной массой M нагревают под поршнем так, что его температура, изменяясь пропорционально квадрату давления, возрастает от первоначального значения T1 до T2. Определите работу, совершённую газом.

Решение. Из системы уравнений

где выражаем давление:

где k = const. Видим, что давление прямо пропорционально объёму, т.е. непостоянно. В таком случае работа определяется с помощью интеграла:

Однако для линейных функций удобнее строить их графики в системе координат (p, V) и находить работу как площадь трапеции под графиком. По формуле площади трапеции (обычной, а не криволинейной):

По формуле (1):

Кроме того, p1V2 – p2V1 = kV1V2 – kV2V1 = 0.

Следовательно,

Задача 9 (МФТИ, 1976). В цилиндре под лёгким поршнем находится m = 14 г азота при T = 300 К. Какое количество теплоты необходимо ему сообщить при изотермическом увеличении объёма на  = 4%?

Решение. По первому началу термодинамики, Но в изотермическом процессе для идеального газа U = const, откуда Значит, Q = A.

При T = const вычислить работу без интеграла, вообще говоря, нельзя. Однако, учитывая, что в первом приближении заменяем криволинейную трапецию обычной.

Имеем:

Так как 

Из уравнения pV = p0V0 выражаем p:

Следовательно,

Q = 48,8 Дж.

Интересно сравнить приведённое решение с точным решением, полученным с применением интеграла:

Разлагая натуральный логарифм в ряд: – и ограничиваясь тремя первыми членами, получим

Таким образом, относительная погрешность составляет всего 3

Окончание следует

TopList